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Abstract 

Current theories concerning gun tube erosion consider that erosion can occur 
under various conditions. The worst condition occurs when the melting 
temperature of the gun steel is exceeded for the tube’s inner surface. This causes 
the tube to grossly melt. This melt wipe mechanism is not as simple as once 
thought because the propellant product gases are known to react with the 
surface, resulting in an altered surface material. This altered material may have a 
lower melting temperature than that of the gun steel and/or weakened 
mechanical properties. Previous surface reaction studies by the authors used a 
generalized equilibrium scheme with a control volume analysis to represent 
surface reactions occurring during a cannon firing. This led to a postreaction 
treatment at the interface which incorporated the subsurface diffusion of species 
to limit the surface reaction. In this study, the surface reactions and rates are 
specified explicitly with published rates and guidance from fundamental 
molecular modeling results. The results demonstrate the utility of the surface 
reaction mechanism presently employed and the incorporation of finite rate 
surface kinetics in the fundamental physical representation of erosion. 
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1. Introduction 

In consideration of the development of the Future Combat System, it is necessary 
to understand the physics and chemistry of the interior balhstic erosion problem 
in order to focus mitigation efforts. This study focuses on incorporating and 
applying generalized finite rate kinetics to the gun tube erosion problem. 
Previously, a melt wipe model (Weinacht and Conroy 1996; Conroy et al. 1997) 
was documented, followed by the inclusion of generalized equilibrium (Conroy 
et al. 1997, 1998, 1999b). The melt wipe description enabled very severely 
eroding systems to be modeled (Conroy et al. 1997,1999a). However, it did not 
account for the erosion in systems which apparently did not reach the melting 
temperature of the gun steel. These systems at the time were thought to have 
some form of augmented heat transfer due to projectile blowby (Gerber and 
Brady 1994) or heat release at the surface due to chemical reactions. It was 
initially thought that the oxidation of the surface was releasing sufficient energy 
to melt the oxidized material. This material along with its energy was 
subsequently blown out of the gun tube in the product gases. Thus the tube 
effectively did not experience any additional heating, as might be evidenced 
experimentally. Chemical phenomena were investigated initially due to unusual 
behavior of RDX-containing propellants. The adiabatic flame temperature of 
M43, which contains RDX, is lower than that of M30,which does not contain 
RDX, while the erosivity was typically higher (Ward et al. 1981). This behavior 
conflicts with previously held beliefs and correlations which used the flame 
temperature to identify erosivity (Jones and Breitbart 1959; Frankle and Kruse 
1967; Lawton 1984). Possible causes for this behavior were hypothesized after 
the inclusion and application of equilibrium chemistry to the erosion problem 
(Conroy et al. 1999b). The equilibrium chemistry required the definition of a 
specific control volume for the reaction which was defined by the diffusion 
depth of carbon into the surface. The premise was that no more steel could react 
with carbon or oxygen; therefore, the limiting factor was diffusion. 

Although equilibrium chemistry continues to be applied for reaction of materials 
which diffuse into the substrate in this work, including finite rate kinetics at the 
surface has resulted in an elimination of many of the assumptions from the 
equilibrium calculations. Finite rate kinetics also allows the inclusion of many 
erosion reaction inhibition concepts which can lead or direct investigations of 
mitigating additives or chemical surface alterations. 
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2. Physical Description 

Figure 1 describes the physical result of gun firings on a coated gun tube. The 
cracks inherent in the chrome, produced by either residual stresses from the 
manufacturing process or from thermomechanical cycling during gun firings, 
enable gases to reach the substrate where they react with the surface altering it 
from virgin gun steel. This altered surface is much easier to remove. A critical 
description of the loss of surface coatings was pointed out by Conroy et al. 
(1999b), namely in that the erosion preferentially traverses laterally under the 
coating following the conductive energy transported through the coating to the 
substrate. Thus, the interface between the substrate and the surface material is 
the hottest location at the bottom of the pit or crack and therefore the most 
reactive. This causes coating unde r-mining and subsequent removal by high 
pressure gas in this region after the passage of the rarefaction wave during gun 
tube blowdown. 

White Layer Untempered Marbite 
(SoluteofCinFccFetithcdingofF&) 

/ lsumy 

Crack 

Post Mortem Contents Fe, 0, Talc 

b 
Heat affected Zone 

Figure 1. Description of postmortem erosion pit (Cote and Rickard 2000). 

Figure 2 describes the physical representation that has been incorporated into the 
erosion model. Included in the figure and representation are the core flow 
species which supply both heat and mass transfer to the surface. Considered in 
the coating and the substrate is the calculation of stress resulting from both the 
surface boundary condition of pressure, as well as the mismatch in coefficients of 
thermal expansion between the coating and substrate. When the stress in the 
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Figure 2. Analytical description including kinetics and coatings. 

coating exceeds the ultimate strength, a crack is assumed to form. This produces 
a crack distribution within the coating. Excessive interfacial shear stress would 
cause the coating to delaminate and subsequently be removed. Convective heat 
transfer imparts energy to the surface of the coating as well as in the crack where 
it is augmented. Energy is transported through both the coating and substrate 
material. Further details are described in previous reports (Conroy et al. 1998, 
1999b). 

Surface kinetics have been included in the following manner. The species 
transported down into the crack are determined through multicomponent 
diffusion with Wilke’s mixing rule to account for interactions. The quantity of 
surface iron available for reaction is determined from the thermally variable 
diffusion depth Jadt for carbon over the computational time step at the crack 
base surface temperature, where alpha is the diffusiviiy and dt is the tie-step. 
The reaction mixture temperature is determined through a weighting function 
between the gas and solid phase materials. Given the specific heats, average 
molecular weight, identity and quantity of reactants, and the 
user-supplied reactions, the nonequilibrium kinetic subroutine models the 
reaction of the species through the macroscopic hydrodynamic time step. By 
specifying the maximum kinetic time step (which is much smaller than the 
hydrodynamic time step) to at least l/25 but no more than l/500 iterations per 
hydrodynamic tune step, the product species from one kinetic computational 
sweep through the reaction mechanism can interact as reactants for all the other 
reactions in the mechanism. 

When the kinetics routine calculation is completed for the hydrodynamic time 
step, the integrated quantity of carbon and oxygen, which diffused into the steel 
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from the dissociation of CO, is subsequently reacted with the substrate through 
equilibrium chemistry as guided from previous work with the model. In the 
current model, binary diffusion of species into the solid phase is assumed. This 
approach does not account for cross terms of additional species. Inclusion of full 
multicomponent subsurface diffusion is planned as a future effort. The quantity 
of material diffused appears to be small in comparison to the surface reacting 
material, although during the cooling portion of the ballistic cycle the diffusion 
continues for quite some time after the surface passes the melting temperature of 
Fe&Z. The period of time between the time when the interface temperature 
decreases below the melting temperature of Fe3C and the temperature at which 
diffusion stops is what potentially makes diffusion important. During this time, 
material is being inserted into the steel and the following shot will experience a 
loaded substrate which will be removed. 

Once both the surface and subsurface systems have reacted, the postreacted 
products are prepared for carryover to the next tune step.. This step allows for 
determining whether energy released was positive or negative, as well as 
whether surface material was lost or gained. This energy is incorporated as a 
surface source term. 

3. Nonequilibrium Chemical Kinetics 

The nonequilibrium (or finite-rate) chemical kinetics subroutine has been 
adapted from the NSRG computational fluid dynamics code written at ARL 
(Nusca 1998), and recently applied to propulsive reacting flow systems (Nusca et 
al. 1999) as well as an open-air, high-speed chemically reacting jet (Nusca et al. 
2000). In the NSRG code, this subroutine is used to compute the chemical source 
term that appears on the right-hand side of each species conservation equation in 
the Navier-Stokes equation set. For the present effort, this subroutine has been 
adapted so that it is patterned after the equilibrium subroutine, documented 
previously in Conroy et al. (1999b). As a result, the Army Research Laboratory 
Gun Tube Erosion Code (ATEC) determines the local flow conditions (density, 
temperature, and species mass fractions) and numerical conditions (time step or 
interval), while the nonequilibrium subroutine (using an appropriately smaller 
chemical time step) returns the new chemical constituency based on a 
predetermined set of chemical reactions and rates (i.e., the chemical mechanism). 
In this section, a general review of the nonequilibrium routine is given. 

Chemical reactions can be expressed in a general fashion (where Xi represents the 
symbol for species i, for example H20) with stoichiometric coefficients, v, for 
each species in these reactions: 
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A chemical kinetics mechanism consists of L such reactions. For each reaction, a 
general reaction rate equation is written, as in 

SzL 
dt C( v; -vi) k, f&‘i - k, fiC;’ 

i=I i i 

where Ci represents the concentration of species i. This equation relates the time 
rate of change of this concentration for a particular species (the left-hand side) to 
the current values of concentrations for all N species, raised to powers of either 
the reactant coefficient (v-prime) or product coefficient (v-double-prime). In 
equation 2, the reaction rates (k) and the stoichiometric coefficients for the 
reaction (v) multiply the product sums. In order to compute the total change in 
Ci, this equation represents a sum over every reaction (total of L) in the reaction 
mechanism. The nonequilibrium routine determines the largest physical time 
step (dt in equation 2), which is also smaller than the fluid time step from ATEC, 
and computes the new species concentrations (using dCi/dt) for all N species. 
Concentrations can be converted to mass fractions for convenience. In general, 
tens or hundreds of chemical time steps will have to be taken per one fluid time 
step. Nusca (1998) provides more details. 

The forward reaction rate is usually defined using the Arrhenius form, 

k, = A T”exp(-E, / kT) , 

where the rate data A, Ea, and n are determined from physical chemistry (k is 
Boltzmann’s constant and is used to express E,/k in temperature units). The 
backward rate can either be specified in the same form as the forward rate 
(above) or can be computed using the equilibrium constant for each reaction, 

k, =k, /K, ; K, = exp(- AG/RT), 

where K, is the equilibrium constant for a particular reaction computed from the 
change in Gibbs energy ( AG) for that reaction (see Nusca 1998 for details). 
Gibbs energy for each species is computed using the NASA Lewis database 
(Gordon and McBride 1971). 

There are many situations for which reaction rates are of the additive type 
(wherein two rates are computed and added together for the final rate) or the 
pressure dependant “falloff” type (wherein the final rate is the product from 
three factors-two separate rates and a function based on the local flowfield 
temperature, pressure, and mixture). The nonequilibrium routine will accept 
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special coding for these cases. In other situations, certain reactions involve a 
“third-body” or a “collision partner” (often denoted M). The species M can stand 
for any of the N species being considered in the mechanism; thus, a single 
reaction involving M-type species is actually N reactions with the same reaction 
rate. For these N reactions, there is usually specified a third-body collision 
efficiency for’a particular collider species. These efficiency factors are multiplied 
by the concentration of the collider species in the product summa tion terms of 
equation 2. The nonequilibrium routine is set up to automatically handle third- 
body reactions. For an example of these situations (i.e., non-Arrhenius reaction 
rates and third-body reactions), the reader is directed to Nusca et al. (2000). 

4. Chemical Kinetics Mechanism 

A finite rate chemical reaction module has been incorporated into the erosion 
package as described. Before using the package, a series of numerical 
experiments were made to insure that the correct information was passed to and 
returned from the module. One of the numerical validating experiments 
involves a simple set of reactions to test various areas of kinetics involving both 
temperature sensitivity as well as possible third body reactions, presented in 
Table 1. 

Table 1. Example kinetics validation reaction set. 

A (cm3/mole s) 
Reaction or (cm6/mol&s) n Es/k Third Body 

6) W) 
1 15 k) + 02 k) * 2OH k) 1.7e13 0.0 24169 no 
2 OH (g) + Hz(g) * HzO(g) + H 2.2e13 0.0 2593. no 

131 OH(g) + H(g) - JAO(g) 2.2e22 1 -2.0 1 0.0 1 Yes 

Table 2 describes the results for the validation kinetic reaction calculation, 
presented in Table 1, using the module as a stand-alone package (which has been 
extensively tested) (Nusca 1998) and the integrated version of the module in the 
erosion package. Both the stand alone and integrated versions produce identical 
results without the reverse reactions. However, if the reverse reactions are 
enabled, then the integrated package depends on the older version of the NASA 
Lewis database which is automatically read in, while the stand-alone package 
uses a newer NASA Lewis database. The differences observed with the reverse 
calculations implemented are due to the different versions of the thermochemical 
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Table 2. Mass fraction production rates for kinetics validation reaction set. 

Integrated Kinetics Stand-Alone Kinetics Module 
(With and without backward reactions) (With and without backward reactions) 

species g/cm3-s species g/cm3-s 
1 -O.l6962E+05 H 1 -O.l6962E+05 H 
2 0.00000E+00 Hz 2 0.00000E+00 Hz 
3 0.00000E+00 Oz Without 3 0.00000E+00 Oz Without 
4 -0.28622E+06 OH Backward Rate 4 -0.28622E+06 OH Backward Rate 
5 0.30318E+06 Hz0 5 0.30318E+06 H20 

1 -O.l6962E+05 H 1 -O.l6962E+05 H 
2 O.l8858E+OO H2 2 O.l9973E+OO H2 
3 0.29935E+Ol 02 With 3 0.31805E+Ol 02 With 
4 -0.28623E+06 OH Backward Rate 4 -0.28623E+06 OH Backward Rate 
5 0.30318E+06 H20 5 0.30318E+06 H20 

database. If this ultimately causes large discrepancies, the older database could 
be updated; however, the effect appears to be orders of magnitude smaller than 
what would be considered an issue. 

A proposed set of reactions between the primary propellant combustion 
products (Ha CO, CO& H20) with the surface of the gun tube is presented in 
Table 3. Although the reverse reactions could have been included at this time, 
only the forward reactions are considered. The coefficients and exponents in 
Table 3 are literature values, except for the coefficient of reaction 
no. 2, which was not available from the literature. Fortunately, the exponent for 
reaction no. 2 was available. This provided a starting point from which to 
develop some estimates for the coefficient. A parametric study involving many 
calculations was performed on the coefficient, a few of which are presented in 
Figure 3. As the coefficient A2 is increased from 3.8e14 to 6.0e14, the effect of 
reaction temperature and duration on pit growth is immediately clear. This 
modification affects the quantity of material removed in the forcing cone region. 
Farther down bore there is a gradual asymptote to a common amount of material 
removed. 

A substantial difference exists between the previous calculation using infinite 
rate (equilibrium) chemistry and the finite rate chemistry results. The previous 
results do not take reaction rates into account; therefore, the pit growth rate 
results are much higher down bore than they apparently should be. The 
chemical reaction rates control the amount of product formed, as well as the 
supply of potential reactants for intermediate reactions. The depth of material 
typically removed from the base of a pit is between 0.7~ and 1.5~ per shot for this 
particular APFSDS round (Hubbard and Gilley 1998). This magnitude is verified 
by micrographs (Cote and Pickard 2000), such as those shown in Figure 4. This 
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Table 3. Proposed reaction mechanism. 

Reaction 
A (cm3/mole-s) Third 

Or n Es/k Body 
(cm6/mole2-s) (-) (K) 

1 CO(g) + O(ads) + (Surface)- CO,(g) + (Surface) 6.17e14 0.0 1510.0 Yes 
(Tsang and Hampson 1986) 

2 CO(g) + (Surface) - C(ads) + O(ads) + (Surface) 5.2e14 0.0 23903.0 no 
(Grabke 1964) (Collider) (Estimate) 

3 O(ads) + O(ads) + (Surface) - 02 (g) + (Surface) 1.89el3 0.0 -900.0 Yes 
(Tsang and Hampson 1986) 

4 H(g) + OH(ads) + (Surface) - HrO(g) +(Surface) 8.35e21 -2.0 0.0 Yes 
(Baulch et al. 19!X?) 

5 Hz(g) + (Surface) - W(g) + (Surface) 4.57e19 -1.4 52530.0 no 
(Tsang and Hampson 1986) 

6 H (g) +O(ads) +(Surface) - OH(ads) + (Surface) 4.71e18 -1.0 0.0 Yes 
(Tsang and Hampson 1986) 

7 CO(g) + Oz(ads) f (Surface) - CO,(g) + O(ads) + 5.06e13 0.0 31800.0 no 
(Surface) 
(Tsang and Hampson 1986) 

1.8 

1.6 

1.4 

2 2 1.2 
P 
5 

2 1.0 
:, & 

c, 0.8 
f 

3 
= 0.6 
nl 

0.4 

700 800 900 1000 1100 1200 1300 1400 

Axial Distance from Rear Face of Tube (mm) 

Figure 3. Pit growth rate for chrome coated steel, 120-mm M256 barrel firing, and 
APFSDS round with various reaction rate coefficients. 
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Figure 4. Substrate erosion beneath “older” cracks showing lateral distribution (Cote and 
Rickard 2000). 

leads to assigning 5.2e14 to the coefficient value AZ. Whether this assigned value 
is correct or not is purely speculation at this time. One item which the 
equilibrium calculations provided is the resultant chemical constituency 
involving iron carbide. Therefore, the resultant carbon from reaction no. 2 in 
Table 3, was enabled to react with the iron at the surface to produce iron carbide 
through the prescribed surface reactions. 

5. Results 

Figure 5 compares the previous equilibrium assumption to the present 
nonequilibrium assumption for a 0.010~in chromium (Ca) plated M256 120~mm 
tank canon firing an APFSDS round. Also presented is data from a M68 
nonchromed tank cannon firing a similar round but reduced by a factor of ten 
(Ward and Brosseau 1980). The difference in predictions between the 
‘equilibrium and nonequilibrium assumptions is striking. The equilibrium 
assumption produces more erosion down bore than the nonequilibrium 
assumption. Closer to the forcing cone for the M68 data and the nonequilibrium 
calculation, we see that the higher temperatures guide the reaction rate. 
Although the nonequilibrium resultant eroded depth should be less than that of 
the equilibrium, this is not necessarily the case since the computational scheme is 
somewhat different between the two. The equilibrium scheme was based on a 
fixed control volume with a finite amount of iron, while the nonequihbrium 
scheme enables iron to be consumed as needed by the surface reaction. 
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Figure 5. Single firing pit growth for 0.010~in chrome coated steel compared to M68 
nonchromed gun firing m392/10 APFSDS round. 

Using the previously determined value for AL calculations for a similar 
tantalum (Ta) coating were made and presented in Figure 6. The only 
modifications were to the physical properties of tantalum. Figure 6 also 
compares equilibrium as well as nonequilibrium results for both chromium as 
well as tantalum coated tubes. The large difference between Cr and Ta in the 
potential pit growth rate at the forcing cone is due to the inherent higher 
temperature experienced with the tantahrm coating, as seen in Figure 7. The 
peak temperature experienced by the pit interface is almost 200 K higher for the 
tantalum than for the chromium. This drives the exponent in the Arrhenius 
reaction rates, as well as the substrate diffusion of the species. This implies that 
if there was a crack or other type of pit formed in a tantahun coating of equal 
thickness as chromium, then the tantalum coating would not tend to have the 
longevity of the chromium coating in similar circumstances. 
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Figure 6. Single firing pit growth rate for 120~mm, M256, Cr, and Ta coated steel 0.010 in 
thick, firing and APFSDS round. 
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Figure 7. Interfacial and crack base temperatures for 0.010~in chromium coating 
compared to 0.10411 tantalum coated 120~mm M256 firing an AF’FSDS. 
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6. Nitrogen Hypothesis 

Considering that the primary driving reaction of the chemical mechanism is the 
dissociation of the carbon monoxide, ways to possibly mitigate erosion would 
include methods to suppress this dissociation or suppress the production of 
carbon monoxide in the first place. Interestingly, Ponec and van Barneveld 
(1979) suggest that the surface dissociation of CO on an iron surface is spoiled by 
nitrogen intrusion or nitriding the surface, but they do not state specifically why 
this occurs. This leads to the possibility that increasing the nitrogen content of 
the propellant products may diminish the CO dissociation and thereby the 
erosion. Leveritt et al. (2000) have discovered that some advanced propellants, 
with similar flame temperatures as older propellants such as JA2, do not erode as 
much as the older double base propellant. Complicating matters is the fact that 
these advanced propellants have a much higher CO/CO2 ratio than do the 
double base propellants- One would expect these higher ratios to exacerbate the 
carburization mechanism. Fortunately, Ponec’s explanation may be applied to 
these new propellants because their nitrogen content is approximately three 
times that of conventional propellants. 

The M242 Bushmaster barrel may be nitrided or chrome plated. If it is chrome 
plated, access for erosion is through the cracks to the substrate (Conroy et al. 
1999b). Considering the hypothesis of Ponec and van Barneveld (1979), 
investigation into nitriding surfaces before they are chrome plated or even 
afterward may lead to technoIogical breakthroughs to increase the service life by 
mitigating the erosion at the base of the cracks. The authors do not believe that 
the nitrided chemical process involved for nitriding to mitigate erosion was 
previously understood, other than that it increased the surface hardness. We 
now have a possible chemical rationale for nitriding gun barrels in that the 
nitrogen appears to either interfere with the dissociation of the carbon monoxide 
on the surface, or perhaps interfere with the diffusion of carbon into the substrate 
steel, or both. 

7. Discussion 

Nonequilibrium chemical kinetics have been incorporated in the erosion 
calculations. The user may input externally the reaction mechanism desired with 
standard kinetic rate parameters. For the iron-gas system, a potential mechanism 
was investigated. One reaction coefficient was unknown for the mechanism and 
was estimated through a parametric study. Fortunately, Grabke (1964) 
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investigated the specific dissociation of CO on the iron surface and reported the 
activation barrier. This enabled the inclusion of the reaction, while an estimate of 
the reaction coefficient was made through a parametric study. 

Nonequilibrium and equiIibrium chemistry erosion computational results were 
presented. The differences are striking in that the equilibrium calculation shows 
much more downbore erosion than the nonequilibrium calculation and is also 
limited near the forcing cone by the control volume description. The 
nonequilibrium calculations show a larger influence of the reaction temperature 
than do the equilibrium results when comparing tantahun to chromium. 
Tantalum may erode more than chromium under similar circumstances due to 
its physical properties. 

The dissociation of CO is important, and ways to mitigate it were investigated in 
the literature. Ponec and van Barneveld (1979) provided a cIue that nitrogen or 
nitriding the surface may inhibit this dissociation. Experimentally, this may have 
been observed by Leveritt et al. (2000) in new high energetic propellants. 
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